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Modelling deformation microstructure with the
crystal plasticity finite-element method

By Peter Bate†
IRC in Materials for High Performance Applications and School of Metallurgy and

Materials, The University of Birmingham, Birmingham B15 2TT, UK

The finite-element (FE) method is commonly used to solve boundary-value prob-
lems in continua. Constitutive equations based on crystal plasticity have been imple-
mented in FE simulations, and these slip-based calculations have the potential to
model a variety of interesting phenomena. However, the substructure of the deformed
state in metals is inherently discontinuous. To what extent continuum plasticity cal-
culations can be reasonably used for deformation microstructure predictions depends
on the microstructural interpretation of the constitutive models. It is possible with
quite simple models to predict orientation gradients at large second-phase parti-
cles and at grain boundaries. Because of the implicit link between the substructure
and mechanical behaviour of metals, and the great flexibility that crystal plastic-
ity models have, the prediction of at least some of the more important aspects of
substructure, by association with state variables, is possible.

Keywords: continuum approximation; rate-sensitive slip; orientation splitting;
deformation banding; relaxed constraint; recrystallization modelling

1. Introduction

The use of continuum methods for microscale problems is attractive, but is also
fraught with difficulties. For modelling deformation substructure, we do not need to
consider atoms but generally need to consider dislocations. There are relationships
between the behaviour of large numbers of dislocations and continuum approxima-
tions: Eshelby (1958) knew this, and also the tendency for ‘the physicist to cling to
the continuum point of view as long as he can’. That tendency is weakening, and
discrete dislocation solutions (van der Giessen & Needleman 1995) are becoming
more popular as computers improve. However, it is probably beyond current tech-
nology to apply such methods to a 1 mm3 volume of, say, deformed aluminium and
at that scale some kind of continuum method must currently be applied to simu-
late what the material effectively solves with 1020 simple parallel processors. The
finite-element method, using constitutive models based on crystal plasticity (crystal
plasticity finite-element method (CPFEM)) is potentially useful in this respect.

This method has been in use and development, particularly in the USA, for many
years now. It became known to the metallurgical community via the work of Peirce
et al . (1982, 1983). Since then, there has been much work aimed at either using
this method to predict plastic anisotropy, or, more significantly, the development
of crystallographic texture. The method has been used in a form where each mate-
rial (integration) point is the agglomeration of a number of orientations—typically
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a few hundred—each deforming identically, for example in the work of Kalidindi et
al . (1992). This, then, essentially invokes the Taylor assumption, but it is devia-
tions from that idealization which are most interesting. Introducing discretization at
less than or equal to the grain scale allows simulation of the effects of intergranular
mechanical inhomogeneity, and the work of Sarma & Dawson (1996a) and Dawson &
Marin (1997) has shown that this has very significant effects on deformation texture
development which would be extremely difficult to take into account using simpler
models. The work presented here explores the application of the CPFEM to pre-
dicting intragranular deformation microstructures. By discretizing at the subgrain
scale we are, following Eshelby’s observation, pushing the continuum approach to,
or perhaps beyond, its limit and it remains to be seen how useful the approach is at
such length-scales.

Crystal plasticity leads to equations which are difficult to solve. Ideal plasticity,
without rate sensitivity, leads to singularities: vertices on yield surfaces and often an
indeterminacy in slip system selection. The well-known Taylor and Bishop and Hill
models are not in a form which is easily assimilated into finite-element (FE) calcula-
tions, and the usual way of overcoming this problem is to invoke rate sensitivity of the
slip. This ‘rounds off’ the step function in the slip response to resolved shear stress.
However, for most cases the rate sensitivity needs to be small and, although the
resulting equations are now solvable in principle, they present considerable problems
in practice.

2. A formalism for finite-element implementation of crystal plasticity

A further problem with the FE implementation of crystal plasticity is the need for
finite deformation increments. As long as the finite increments are reasonably small,
of the order of 1% or less, then an additive decomposition of strain into elastic and
plastic parts can be assumed and, conveniently, backward Euler integration used.
That essentially means that equilibrium is determined at the end of each time-step,
and that strain and rotation increments are given simply by the terminal strain
rate and spin multiplied by that time-step. This formalism is implicit and of course
nonlinear, and the solution method used here requires three levels of iteration. The
first level is the determination of slip increments from a trial stress state. That stress
state in turn is determined from the overall strain increment, and the top level of
iteration solves the overall state of quasi-static equilibrium in the domain.

The first two levels of iteration are carried out at each integration point of the
FE mesh. The slip stresses τ are given by the following expression in terms of the
(plastic) slip strain increments, ∆γ:

τα = τ0
α(∆γβ)

(
∆γα
∆t

)m
, (2.1)

where τ 0 are slip resistances, ∆t is the time-step and m is the slip-rate sensitivity.
Indices in Greek text refer to slip system numbers, 1 to 12 here, and those in Roman
to spatial coordinates, 1 to 3. The solution of equation (2.1) for the slip increments
is not a simple matter. Generally, the slip rate sensitivity is small, say 0.01, and the
strain hardening matrix,

Hαβ =
∂τ0
α

∂∆γβ
, (2.2)
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Modelling deformation microstructure 1591

is often nearly singular. In this situation it is convenient to take the logarithmic form
of equation (2.1),

ln τα = ln τ0
α(∆γβ) +m(ln ∆γα − ln ∆t), (2.3)

and solve using the iteration

∆γ+
α = ∆γα exp

{[
∆γβ
τ0
α

Hαβ +mδαβ

]−1

(ln τβ − ln τ0
β(∆γρ)−m(ln ∆γβ − ln ∆t)

}
.

(2.4)

This is possible because a reasonable initial guess (predictor) for ∆γα will give the
correct signs for the slips, provided some very simple conditions are met. That pre-
dictor is based on the formula,

∆γβ = ∆t
{

τα
τ0
α(φ)

}1/m

, (2.5)

where τ0
α(φ) is based on the last estimate obtained for the slips, and this predictor

is applied with every new estimate of stress to avoid prejudicing the operative slip
systems. This iteration has worked quite well. The predictor allows the definition
of ‘active’ systems, which facilitates size reduction of the various linear equation
systems; very desirable for efficient computation. The requirement of a good predictor
estimate constrains increment sizes, and the initial values need to be capped.

Given the slip magnitudes for a given stress, it is necessary to iterate for the stress,
σ, given the overall estimate of strain increment, ∆ε, which is a sum of elastic and
plastic components. The iteration used is

σ+
ij = σij + [sijkl +mα

ijm
β
klX

−1
αβ ]−1{∆εkl − sklmn∆σmn −mρ

kl∆γρ}, (2.6)

where s is the elastic compliance, ∆σ is the Cauchy stress increment in the current
coordinate system, X is the visco-plastic hardening matrix,

Xαβ = δαβm
τα

∆γα
+
τα
τ0
α

Hαβ, (2.7)

and m is the Schmid matrix:

mα
ij = 1

2{binj + bjni}α. (2.8)

The Schmid matrix relates the slip stress and strain to the overall stress and plastic
strain increment by

τα = mα
ijσij , ∆εpij = mα

ij∆γα, (2.9)

where bα and nα are the cosines of the directions and planes of system α in the
current spatial frame.

Solution for overall equilibrium follows the usual implicit FE formalism for elasto-
plastic problems. The contribution from each integration point to the Jacobian used
in the iterative solution for that equilibrium is given by the inverse of the elasto-
plastic compliance: the Jacobian in equation (2.6). That is taken to relate the defor-
mation rate to the Jaumann stress rate, and the stress is taken to rotate with the
material, not the crystal, reference frame. All the iterations described above need to
be damped. The iteration, equation (2.6), is carried out at constant orientation: the
orientation, and so the orientation-dependent Schmid matrix, is updated with each
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successive refinement of equilibrium rather than within the stress iteration. Attempt-
ing to include orientation in equation (2.6) can lead to very unstable behaviour
because the active systems can change quite abruptly. The incremental change in
crystal orientation, ∆r, is given by the difference in overall rigid body rotation and
that due to lattice spin,

∆rij = Ωij∆t− 1
2{binj − bjni}α∆γα, (2.10)

whereΩ is the rigid body spin of the overall deformation. In practice, ∆r is translated
into a change in the Euler angles of the crystal orientation.

With a rate sensitivity index of 0.01 or 0.02, overall deformation increments of
about 0.002–0.005 can be used, and convergence of all the iterations to reasonable
accuracy (10−4) usually occurs in only a few steps. Exceptions occur when slip-
system changes take place, but poor convergence due to this has not propagated
beyond the first stages of load equilibrium iteration. Despite generally well-behaved
algorithms, the number of calculations involved is considerable, and even with fairly
simple problems the computation time is large. For that reason, all the examples
given below are two dimensional, i.e. plane strain, and use only a few hundred eight-
node quadrilateral or six-node triangular elements.

3. Examples

As far as material behaviour is concerned, the form and evolution of the orienta-
tion and the slip resistances, τ 0 are of primary interest. It is of course possible to
investigate the effect of different types of slip systems, but in this work octahedral
slip typical of FCC metals is used, with a small rate sensitivity. The small, instanta-
neous, slip-rate sensitivity is really a mathematical convenience to avoid the ‘on-off’
discontinuity in slip-system activity of the Bishop and Hill analysis, although it does
correspond to the type of value observed experimentally with abrupt changes in
loading rate.

The material state at any point is determined by the Euler angle set describing
the orientation and the τ 0. For {111} 〈110〉 slip this gives an apparent number of
15 state variables. The evolution of the Euler angles follows from equation (2.10).
The evolution of τ 0 and the interpretation of this aspect of the material state is
potentially a significant factor in attempting to model the development of structure
by the CPFEM. The simplest useful model is one where the τ 0 are all equal at
any point in space and time: ‘isotropic’ hardening. Some interesting results can be
obtained even with this approximation, and some examples are given below before
dealing, finally, with the possibility of going beyond that approximation.

(a) Deformation zones at inclusions

Humphreys and his co-workers have carried out much work on recrystallization
nuclei forming at the deformation zones surrounding inclusions. One particular case
was the occurrence of ‘plumes’ at silicon particles in aluminium crystals of initial ori-
entation (001) [110], deformed in plane-strain compression (Humphreys & Ardakani
1994). Crystal rotations carried the bulk of the material towards one variant of the
‘copper’ orientation, near {112} 〈111〉, whereas the ‘plume’ orientations were of the
mirror-symmetry-equivalent ‘copper’ orientation. Results using the model described
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– 30

– 15

      Φ       0

15

30

Figure 1. Contours of Euler angle Φ in the ‘matrix’ surrounding an elastic inclusion. Plane
strain, εxx = 1. The start orientation was perturbed 3◦ away from ideal (001) [110], and most
of the matrix has rotated towards the ‘copper’ orientation. Note the ‘plumes’ that have rotated
towards the complementary ‘copper’ orientation.

above are given in figure 1. The plumes are predicted reasonably well in this case,
and this is a relatively straightforward application.

The hardening rule used was of the Voce type,

τ0+
α = τs − (τs − τ0

α) exp
(
−η
∑
|∆γβ |

)
, (3.1)

where the saturation stress, τs, was set to have a rate invariant value of 50 MPa, η
was 3.5 and the initial values of τ 0 were 20 MPa. This type of hardening rule actually
only requires one state variable in addition to the orientation triplet. More complex
isotropic hardening models would require perhaps only two or three to give very
accurate representations of overall stress–strain response in proportional loading.

(b) Relaxed constraint effects on texture

Rather than having an elastic inclusion, we can consider a plastic inclusion: a
grain surrounded by grains of different orientations. Although most models of tex-
ture development involve very simple rules about how a grain would deform within
a polycrystal, details of the interaction of a grain with its neighbours are very sig-
nificant, as shown by the work by Sarma & Dawson (1996b). Unfortunately, such
analyses become very computationally demanding in realistic cases, involving a sta-
tistically significant number of grains and three spatial dimensions.

An interesting simple case is that of an embedded ‘cube’ grain with an overall
deformation consisting of plane strain with a simple shear component. This is the
type of deformation found away from the mid-plane of plate during rolling, and of
course the stability of ‘cube’ grains is important because they become nuclei for sub-
sequent recrystallization. The ‘cube’ orientation actually has a high resistance to the
simple shear, which aids its stability particularly when the original grain has become
flattened. This flattening leads to the possibility of geometric relaxation of constraint
(Honeff & Mecking 1978), and figure 2 shows results for a ‘cube’ grain embedded in a
matrix of six other grains of randomly selected orientations, deformed with a simple
shear rate one-third of the plane-strain rate imposed at the boundary. During early
stages of deformation, moderately large orientation gradients, relative to the overall
strain, are set up in the ‘cube’ grain, but with increased straining these actually
decrease to some extent, demonstrating the geometric relaxed constraint effect. This
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Figure 2. Misorientation, in degrees relative to ‘cube’, in an initially ‘cube’ grain embedded in
six random grains subject to a combination of plane strain and simple shear at the boundary.
The misorientation decreases with increasing strain as the grain becomes flattened. The ‘full
constraint’ Taylor model predicts uniform misorientations of 5◦ at εxx = 0.5 and 10◦ at εxx = 1.

of course also means greater shearing and inhomogeneity in the surrounding grains,
into which subgrains from the ‘cube’ grain will grow.

Although of no great importance to the results, this example used the Voce-type
model, equation (3.1), with a rate-sensitive saturation stress,

τs = C
(∑

|γ̇β |
)n

, (3.2)

with a value for C of 56 MPa and a value for the rate sensitivity of saturation stress,
n, of 0.02.

(c) Orientation splitting

Figure 2 also shows the development of a local band of relatively high misorien-
tation within the ‘cube’ grain. This type of feature occurs very often, with many
other initial orientations, in this type of multi-crystalline simulation as a result of
intergranular effects. There are cases where orientation banding is predicted to occur
in ‘single’ crystals, with ‘isotropic’ hardening. An example of this is shown in fig-
ure 3, where an initial orientation near (332) [1̄1̄3] is subject to ideal plane strain
at the domain boundary. This orientation would rotate towards ‘Goss’ according to
the simple Taylor model, whereas the CPFEM predicts that it splits into alternate
bands which rotate towards either ‘Goss’ or the ‘copper’ orientation. The mechanical
advantage gained from this behaviour is that, in early stages of deformation, com-
plementary simple shears are associated with the bands. The case shown started out
5◦ away from the ‘watershed’ predicted by the Taylor full constraint (FC) model,
and some material is predicted to rotate towards ‘copper’ with start orientations
somewhat further away from that point. This type of behaviour naturally applies to
a whole range of other orientations.

(d) Bicrystal simulation

A major incentive for the prediction of deformation microstructure, after large
deformations anyway, is that the recrystallization behaviour depends critically on
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Figure 3. Simulation of plane-strain compression, to a strain of εxx = 0.75, of a region with an
initial orientation 〈ϕ1, Φ, ϕ2〉 = 〈90◦, 67◦, 45◦〉. The orientation splitting is shown as 001 ‘pole
figures’.

that microstructure. It is known that prior grain boundaries are common sites for
the nucleation of recrystallization. One reason for this is, naturally, the availability of
a mobile high-angle boundary, but the difference in mechanical response due to the
initial orientation difference is also important. Usually, it is assumed that a greater
amount of deformation occurs adjacent to the boundary, but in fact there is a large
range of orientation pairing where mutual relaxation of constraint can mean that the
boundary region is effectively ‘softer’. A somewhat artificial example showing this is
the ‘full constraint’ deformation of a bicrystal, the two orientations of which would
shear in opposite ways under ‘relaxed constraint’ conditions. Such an example, with
no special choice of initial orientations, is shown in figure 4.

Various features are apparent. The orientations develop, with considerable spread,
towards complementary ‘S’ orientations. Deformation banding develops, giving a
‘herring bone’ pattern, most obvious in the plastic strain distribution, figure 4a, but
also noticeable in the spatial variation of crystal orientation, figure 4c. There is a
large orientation gradient adjacent to the boundary within one of the grains, and
there is a coincident gradient in the von Mises effective stress, figure 4b, with low
stresses near the boundary.

Now, the von Mises stress might seem to be irrelevant, or even obsolete, in the
context of slip-based modelling. However, it is likely to provide a reasonably good
measure of the overall resistance to deformation and so the density of substructure
formed. In this example, all the slip resistances have essentially reached saturation
level (equation (3.1) was used), but that does not take into account the orientation-
related overall resistance. The von Mises stress includes the ‘Taylor factor’-type
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Figure 4. The predicted state of a bicrystal deformed in plane strain to εxx = 1. Deformation
banding is apparent, as is the reduction in effective stress and the development of orientation
gradients at the boundary. The initial orientations and final orientations of integration points
are shown as 001 ‘pole figures’ on the right.

effects and it seems reasonable that substructural density would depend on that
as well as slip resistance.

If the assumption is made that the final von Mises stress is linearly related to the
substructure density in metals which undergo extensive dynamic recovery to give
a cell or subgrain structure, then the output from the CPFEM simulation can be
used as input to a two-dimensional ‘network’ model for recrystallization (Humphreys
1993). Cell centres were included at random coordinates within the domain, with
exclusion conditions to ensure that the separations were inversely proportional to
the local von Mises stress. Cell orientations were directly interpolated and the initial
network set up via a Dirichlet tessellation. Two stages in the development of such
an annealing simulation is shown in figure 5.

At the early stages of ‘annealing’, the essential features of the deformed structure
are apparent. The crystallite size is larger, and there are more high-angle boundaries,
near the original grain boundary. There are some moderately high-angle boundaries
associated with the deformation inhomogeneity in the upper grain. At the later
stage shown, considerable ‘strain-induced boundary migration’ has occurred, with
two groups of recrystallized grains. These have orientations corresponding to a ‘cube’
texture rotated by 15◦ about the extension direction.

The growth of the near-‘cube’ grains depended critically on the model describing
the energy and mobility of the boundaries. Simply having reduced mobility and
energy of low-angle boundaries allowed growth of one ‘S’ component into the other,
and it was necessary to reduce the mobility of high misorientations, close to Σ3, as
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Figure 5. Results from a ‘network’ annealing model with the initial representation of microstruc-
ture derived from the CPFEM results shown in figure 4. The initial number of crystallites was
900, as shown in (a). Only boundaries with misorientations greater than 3◦ are shown, and
darker grains are near {001} 〈100〉. The configuration at 400 crystallites is shown in (b); the
‘recrystallizing grain’ orientations are circled in the 001 ‘pole figure’ shown to the right.

well. It is clear that detailed knowledge of the variation of boundary properties with
misorientation, and possibly inclination, will be needed for this type of modelling
to be useful, irrespective of the accuracy with which the CPFEM can predict the
deformed structure.

(e) Deformation banding

The last example showed some evidence of deformation banding, and the prediction
of such a common feature in deformed microstructures would be of considerable value.
Banding features are readily seen in the simulations of plane-strain compression of
the ‘copper’ orientation, such as that shown in figure 6.

There are a few interesting aspects of these bands. The inclination of the ‘strain’
bands (30◦) is less than that of the ‘orientation’ bands (40◦). This is not simply
because the ‘strain’ bands represent the accumulation of deformation, and so are
subject to a rigid-body rotation. In fact, the effective strain rate is inhomogeneous
in bands inclined at ca. 35◦. Neither of the major band types has an obvious crystal-
lographic origin, although the low inclination ‘sub-banding’ might.

The mean stable orientation is near Φ = 30◦, which is close to that observed in
real deformation textures of polycrystals. This is intermediate between the Taylor
FC (Φ = 27.4◦) and RC (Φ = 35.3◦) predictions, and the apparent reason for the
banding is that the ‘material’ is achieving a degree of relaxation of constraint by
inhomogeneous deformation. Many orientations will then undergo similar ‘relaxed
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Figure 6. Plane-strain compression, with ‘full constraint’ boundary conditions, of the ‘copper’
orientation to εxx = 0.75. Effective strain levels are shown above contours of the Euler angle,
Φ, in degrees. Bands are seen in each case, the orientations with respect to crystal directions in
the plane are shown to the right.

constraint’ banding, but predictions of this behaviour are limited here by the plane-
strain assumptions.

Reasons for the formation of deformation bands have been listed by Dillamore et
al . (1972). The banding predicted in the examples shown in figures 3 and 6 is essen-
tially due to the third of those reasons—reduction in overall work by inhomogeneous
deformation—and it is likely that the CPFEM will deal with all but one of their
list. That exception is related to the possibility of different sets of systems achieving
the same strain rate but different rotations. Although relaxation of constraint will
avoid that indeterminacy, it is difficult to see how the CPFEM can deal with that
possibility in all cases. The question arises as to how a selection between mechani-
cally equivalent sets could arise. Although there are various mathematical techniques
for avoiding indeterminacy of slip-system selection, it seems likely that the material
solves it by orientation splitting at the level of the deformation substructure and
grains split into regions in which a subset of the ‘Taylor’ systems are operative.

In the continuum approach, there needs to be some mechanical advantage for such
orientation splitting, and this must then be a feature of the constitutive model. One
possibility is that ‘latent hardening’—the hardening of ‘inactive’ systems relative to
‘active’ ones—could lead, locally, to a minimization of the number of slip systems
and so to more accurate simulation of orientation splitting.

It is well known that simply adding up the amount of slip and taking that sum to
determine hardening is a fairly poor approximation. Crystals deforming by single slip
show much lower hardening rates than those deforming by multiple slip, and there is
much evidence that dislocation accumulation leads to oriented structures which give
anisotropic hardening, so that typically systems that are not active give higher slip
resistances than those in which slip is occurring to a significant extent. A simple way
of implementing latent hardening, which is satisfactory for the purposes of showing
the type of effect that such ‘anisotropic’ hardening will have, is to use the Voce-type
model but make the saturation slip resistance different on different systems. To do
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Figure 7. The (effective) stress–strain curves for ‘copper’ orientation prestrained in plane
strain and then subject to shear, with both ‘isotropic’ and ‘latent hardening’ (B/A = 0.43).

this, equation (3.1) is modified so that

τ0+
α = ταs − (ταs − τ0

α) exp
(
−η
∑
|∆γβ|

)
, (3.3)

where the individual saturation stresses are determined by a weighted sum of the
absolute slip rates:

ταs = A+B

∑
Sαρ|γ̇ρ|∑ |γ̇ρ| . (3.4)

The matrix S describes the latent hardening effect, B the overall magnitude and
A the ‘isotropic’ component. All elements of S are positive—maximum unity—and
zero if a diagonal element. Slip on a single system then gives the saturation stress
on that system equal to A, but for other systems it will be higher, up to a maximum
of A + B. There are many possibilities for the exact form of S, but here only the
extreme case of penalization is considered. This means that

Sαβ = 1− δαβ. (3.5)

The effect of this on the mechanical response of a ‘copper’-oriented region subject
first to plane strain and then to a (negative) shear to give an orthogonal change in
strain path direction is shown in figure 7.

Now, although the mechanical response to changes in straining state predicted
using this approach are, very approximately, of the correct form, the effect on defor-
mation banding is relatively minor. Orientations for which no deformation banding
is predicted using the (two-dimensional) isotropic model do not show banding with
latent hardening, including other forms to the one used above, equation (3.5). The
effect of latent hardening on the prediction of banding in the ‘copper’ orientation is
shown in figure 8.

Clearly, there is no major effect. There is a slight increase in the degree of inhomo-
geneity, but the angles of the bands are the same as those predicted with ‘isotropic’
hardening. It appears that ‘latent’ hardening, at least with the simple formalism
used here, does not encourage the local selection of slip system subsets to any greater
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Figure 8. Plane-strain compression, with ‘full constraint’ boundary conditions, of the ‘copper’
orientation to εxx = 0.75 with ‘latent’ hardening (B/A = 0.25). The quantities and levels are as
in figure 6.

degree than does ‘isotropic’ hardening. It may even be that the CPFEM is inherently
incapable of predicting the substructure-scale effects observed in reality and that the
limits of the continuum approach have been reached.

4. Summary

There is in principle a great deal of freedom in the CPFEM to take into account the
real effects of dislocation interactions and accumulation. However, at some stage the
limits of the ‘continuum’ plasticity assumptions will be met and further details of the
nature of the deformation microstructure inferred from state variables involved in a
constitutive model. It is fairly obvious that constitutive models used in finite-element
modelling do not have a length-scale: for example, it is difficult to see how the Hall–
Petch relationship could be predicted from polycrystal models of the type dealt with
above. It is possible to construct plasticity models which contain a dependence of flow
stress on gradients of plastic strain (Aifantis 1986), and for the continuum modelling
of microstructure this type of approach may be useful. However, FE models with
high-order field continuity would be required for their application and this poses a
significant difficulty.

Despite this limitation, the CPFEM does give potentially useful simulations of
some aspects of deformation microstructure. Its value in the field of deformation
textures and inhomogeneous intragranular deformation is well established and even
simple interpretations of state, such as the correlation of effective stress with sub-
boundary density, should allow the prediction of some recrystallization nucleation
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events. If that is indeed the case, then the method will have a valuable role in an
important and difficult area of materials engineering.

The author would not have engaged in this activity without the encouragement of F. J. Humph-
reys and W. B. Hutchinson, and thanks them for that, and S. J. Lillywhite for constructive
criticism of the manuscript. The work has been supported by the Engineering and Physical
Sciences Research Council (GR/L65857) and Alcan International.
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(ed. G. Gottstein & K. Lücke), pp. 265–275. Berlin: Springer.

Humphreys, F. J. 1993 A microstructural model of recrystallisation. Mater. Sci. Forum 113–
115, 329–334.

Humphreys, F. J. & Ardakani, M. G. 1994 The deformation of particle-containing aluminium
single crystals. Acta Metall. Mater. 42, 749–761.

Kalidindi, S. R., Bronkhorst, C. A. & Anand, L. 1992 Crystallographic texture evolution in bulk
deformation processing of FCC metals. J. Mech. Phys. Sol. 40, 537–569.

Peirce, D., Asaro, R. J. & Needleman, A. 1982 An analysis of non-uniform and localised defor-
mation in ductile single crystals. Acta Metall. 30, 1087–1119.

Peirce, D., Asaro, R. J. & Needleman, A. 1983 Material rate dependence and localised deforma-
tion in crystalline solids. Acta Metall. 31, 1951–1976.

Sarma, G. B. & Dawson, P. R. 1996a Effects of interactions among crystals on the inhomogeneous
deformation of polycrystals. Acta Mater. 44, 1937–1953.

Sarma, G. B. & Dawson, P. R. 1996b Texture predictions using a polycrystal plasticity model
including neighbor interactions. Int. J. Plasticity 12, 1023–1054.

van der Giessen, E. & Needleman, A. 1995 Discrete dislocation plasticity—a simple planar
model. Modelling Simul. Mater. Sci. Engng 3, 689–735.

Phil. Trans. R. Soc. Lond. A (1999)

 rsta.royalsocietypublishing.orgDownloaded from 

http://rsta.royalsocietypublishing.org/


 rsta.royalsocietypublishing.orgDownloaded from 

http://rsta.royalsocietypublishing.org/

